Functional analysis Sheet 3 — SS 21 Functional calculus and spectral theorem

1. Recall that, given a selfadjoint operator $T \in \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, the spectral measure μ_x fulfills

$$\langle f(T)x,x\rangle = \int_{\sigma(T)} f(\lambda) \mathrm{d}\mu_x, \qquad \forall x \in \mathcal{H}$$

Compute the spectral measure μ_x in case

- (a) T is a compact operator.
- (b) T is the multiplication operator on $L^2[0,1]$ by a smooth function g(x).
- 2. Suppose that selfadjoint operators A and B on a separable Hilbert space commute. Then for any bounded Borel functions φ and ψ the operators $\varphi(A)$ and $\psi(B)$ commute.
- 3. Let A_n and A be selfadjoint operators on a separable Hilbert space H and $f \in C_b(\mathbb{R})$.
 - (a) Suppose that $A_n \to A$ in the operator norm. Prove that $f(A_n) \to f(A)$ in the operator norm.
 - (b) Suppose that $A_n x \to A x$ for all $x \in H$. Prove that $f(A_n) x \to f(A) x$ for all vectors $x \in H$.
- 4. Let $A \in \mathcal{L}(\mathcal{H})$ be selfadjoint. Put $E_{\lambda} := E^A((-\infty, \lambda])$. Let $\lambda_0 \in \sigma(A)$. Prove that
 - (a) $\lambda_0 \in \sigma_p(A) \iff E_\lambda \not\to E_{\lambda_0}$ strongly when $\lambda \nearrow \lambda_0$.
 - (b) $\lambda_0 \in \sigma_c(A) \iff E_\lambda \to E_{\lambda_0}$ strongly when $\lambda \nearrow \lambda_0$.
- 5. Let $A \in \mathcal{L}(\mathcal{H}), A = A^*$. Consider the Schrödinger equation

$$\mathrm{i}\partial_t \psi = A\psi.$$

For any $t \in \mathbb{R}$ define

$$U(t) := \int_J e^{-\mathrm{i}t\lambda} \,\mathrm{d}E(\lambda)$$

where $E(\cdot)$ is the PVM of the operator A. Prove the following:

(a) U(t) is a 1-parameter semigroup, unitary, strongly continuous, i.e.

$$U(0) = 1, \qquad U(t+s) = U(t)U(s), \qquad U(t)^* = U(t)^{-1}, \qquad U(s)\psi \xrightarrow{s \mapsto t} U(t)\psi$$

(b) For any $\psi \in \mathcal{H}$ one has

$$A\psi = \lim_{t \to 0} \mathrm{i} \frac{U(t)\psi - \psi}{t} = \mathrm{i} \left. \frac{d}{dt} \right|_{t=0} U(t)\psi$$

(c) $\psi(t) := U(t)\psi_0$ is the unique solution of the equation $i\partial_t \psi = A\psi$ with initial data ψ_0 .

6. Multivariable Bounded Borel Functional Calculus. Let A_1, \ldots, A_n be selfadjoints bounded operators on \mathcal{H} pairwise commuting, i.e. $[A_j, A_i] = 0$ for any i, j, where [A, B] := AB - BA. Let $\sigma := \sigma(A_1) \times \cdots \times \sigma(A_n)$. There exists a unique map

$$\Phi \colon \mathcal{B}_b(\sigma) \to \mathcal{B}(\mathcal{H})$$
$$f \to \Phi(f) \equiv f(A_1, \dots, A_n)$$

such that

- (i) Φ is a unital-*-algebra homeomorphism;
- (ii) $||\Phi(f)|| \le ||f||_{L^{\infty}(\sigma)};$
- (iii) if $f(t_1, ..., t_n) = t_i$, then $f(A_1, ..., A_n) = A_i$.
- (iv) if $(f_n)_n$ is a bounded sequence in $\mathcal{B}_b(\sigma)$ converging pointwise to f, then $\Phi(f_n)$ converges strongly to $\Phi(f)$.

HINT: follow the following steps:

• for any Borel subsets $\Omega_1, \ldots, \Omega_n$ of $\sigma(A_1), \ldots, \sigma(A_n)$ consider the function on σ

$$h(x_1,\cdots,x_n) = 1_{\Omega_1}(x_1)\cdots 1_{\Omega_n}(x_n)$$

and put

$$h(A_1,\ldots,A_n) = 1_{\Omega_1}(A_1)\cdots 1_{\Omega_n}(A_n)$$

using Borel functional calculus. Verify that $h(A_1, \ldots, A_n)$ is a orthogonal projection.

• If f is a simple function of the form

$$f(x_1,\ldots,x_n)=\sum c_k h_k$$

with h_k as above and having zero products, verify that

$$\|f(A_1,\ldots,A_n)\| \le \|f\|_{\infty}$$

- Use approximation arguments to extend to a genereal bounded borel function $f(x_1, \ldots, x_n)$
- 7. Spectral theorem for normal operators. Let $A \in \mathcal{L}(\mathcal{H})$ be a normal operator, i.e. $A^*A = AA^*$. There exists a unique projection valued measure defined on the borelian sets of $\sigma(A) \subset \mathbb{C}$ such that

$$A = \int_{\sigma(A)} z \, \mathrm{d}E(z)$$

HINT: • Write $A = A_1 + iA_2$ with

$$A_1 = \frac{A + A^*}{2}, \qquad A_2 = \frac{A - A^*}{2i}$$

and check that A_1, A_2 are selfadjoint commuting operators.

• Put $E(M_1 \times M_2) = E^{A_1}(M_1) E^{A_2}(M_2)$ for any M_1, M_2 Borel sets of \mathbb{R} and show that one can extend this to be a PVM on \mathbb{R}^2 .

• If f is a Borelian function of \mathbb{R} , show that

$$\int_{\mathbb{R}} f(\lambda_k) dE^{A_k}(\lambda_k) = \int_{\mathbb{R}^2} f(\lambda_k) dE(\lambda_1, \lambda_2), \qquad k = 1, 2$$

8. Spectral theorem for unitary operators. Let $U \in \mathcal{L}(\mathcal{H})$ be a unitary operator, i.e. $U^*U = UU^* = Id$. There exists a unique projection valued measure defined on the borelian sets of $[0, 2\pi]$ so that

$$U = \int_0^{2\pi} e^{\mathrm{i}t} \,\mathrm{d}E(t)$$